Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Toward an improvement of the analysis of neural coding

Alegre Cortés, Javier; Soto Sánchez, Cristina; Albarracin, Ana LiaIcon ; Farfan, Fernando DanielIcon ; Val Calvo, Mikel; Ferrandez, José M.; Fernandez, Eduardo
Fecha de publicación: 10/01/2018
Editorial: Frontiers Research Foundation
Revista: Frontiers in Neuroinformatics
ISSN: 1662-5196
e-ISSN: 1662-5196
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time–Frequency (T–F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T–F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T–F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain–machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.
Palabras clave: NEURAL CODING , NON-LINEAR SIGNALS , NA-MEMD , MACHINE LEARNING CLASSIFICATION , SINGLE TRIAL CLASSIFICATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.051Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/101936
URL: http://journal.frontiersin.org/article/10.3389/fninf.2017.00077/full
DOI: https://doi.org/10.3389/fninf.2017.00077
Colecciones
Articulos(INSIBIO)
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Citación
Alegre Cortés, Javier; Soto Sánchez, Cristina; Albarracin, Ana Lia; Farfan, Fernando Daniel; Val Calvo, Mikel; et al.; Toward an improvement of the analysis of neural coding; Frontiers Research Foundation; Frontiers in Neuroinformatics; 11; 77; 10-1-2018; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES