Artículo
Metrics in the sphere of a Hilbert C*-module
Fecha de publicación:
12/2007
Editorial:
Versita
Revista:
Central European Journal of Mathematics - (Online)
ISSN:
1895-1074
e-ISSN:
1644-3616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of finding short smooth curves in the sphere SX = {x ∈ X :( x, x) = 1}. Curves in SX are measured considering the Finsler metric which consists of the norm of X at each tangent space of SX, The initial x0 ∈ Sx and any tangent vector υ at x0, there exists a curve γ(t)=e^tZ(x0), Z ∈ LA(X), Z*=-Z and ∥Z∥ ≤ π, such that γ(0)=υ, which is minimizing along its path for t ∈ [0,1]. the existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by ƒ0 the selfadjoint projection I − x0 ⊗ x0, if the algebra ƒ0LA(X)ƒ0 is finite dimensional, then there exists a curve γ, which is minimizing along its path.
Palabras clave:
C*MODULES
,
SPHERES
,
GEODESICS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Varela, Alejandro; Metrics in the sphere of a Hilbert C*-module; Versita; Central European Journal of Mathematics - (Online); 5; 4; 12-2007; 639-653
Compartir
Altmétricas