Artículo
Surface diffusion of graphs: Variational formulation, error analysis, and simulation
Fecha de publicación:
12/2004
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Surface diffusion is a (fourth-order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for graphs and derive a priori error estimates for a time-continuous finite element discretization. We also introduce a semi-implicit time discretization and a Schur complement approach to solve the resulting fully discrete, linear systems. After computational verification of the orders of convergence for polynomial degrees 1 and 2, we show several simulations in one dimension and two dimensions with and without forcing which explore the smoothing effect of surface diffusion, as well as the onset of singularities in finite time, such as infinite slopes and cracks.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; Surface diffusion of graphs: Variational formulation, error analysis, and simulation; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 42; 2; 12-2004; 773-799
Compartir
Altmétricas