Mostrar el registro sencillo del ítem

dc.contributor.author
Bernardis, Ana Lucia  
dc.contributor.author
Martín Reyes, Francisco Javier  
dc.date.available
2020-03-22T13:54:29Z  
dc.date.issued
2003-06  
dc.identifier.citation
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157  
dc.identifier.issn
0033-5606  
dc.identifier.uri
http://hdl.handle.net/11336/100613  
dc.description.abstract
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Restricted weak  
dc.subject
Maximal operators  
dc.subject
Weighted Lp spaces  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T20:04:33Z  
dc.journal.volume
54  
dc.journal.number
2  
dc.journal.pagination
139-157  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España  
dc.journal.title
Quarterly Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/qmath/hag017