Mostrar el registro sencillo del ítem
dc.contributor.author
Bernardis, Ana Lucia
dc.contributor.author
Martín Reyes, Francisco Javier
dc.date.available
2020-03-22T13:54:29Z
dc.date.issued
2003-06
dc.identifier.citation
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157
dc.identifier.issn
0033-5606
dc.identifier.uri
http://hdl.handle.net/11336/100613
dc.description.abstract
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Restricted weak
dc.subject
Maximal operators
dc.subject
Weighted Lp spaces
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-20T20:04:33Z
dc.journal.volume
54
dc.journal.number
2
dc.journal.pagination
139-157
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
dc.journal.title
Quarterly Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/qmath/hag017
Archivos asociados