Artículo
Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces
Fecha de publicación:
06/2003
Editorial:
Oxford University Press
Revista:
Quarterly Journal Of Mathematics
ISSN:
0033-5606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let φ: ℝ → [0, ∞) be an integrable function such that φ(-∞,0) = 0 and φ is decreasing in (0, ∞). Let τh f (x) = f (x - h), with h ∈ ℝ/{0} and φ R(x) = (1/R)φ(x/R), with R > 0. In this paper we study the pair of weights (u, v) such that the operators Mτhφ f (x) = supR>0 |f| * [tau;hφ]R (x) are of restricted weak type (p, p) with respect to (u, v), 1 ≤ p < ∞. As particular cases, these operators include some maximal operators related to Cesàro convergence. We characterize those functions φ for which Mτhφ is of (restricted) weak type (p, p) with respect to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from the characterization that the interval of those p such that M τhφ is of weak type (p, p) can be left-closed, [p 0, ∞], or left-open, (p0, ∞], without having restricted weak type (p0, p0).
Palabras clave:
Restricted weak
,
Maximal operators
,
Weighted Lp spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Restricted weak type inequalities for convolution maximal operators in weighted Lp spaces; Oxford University Press; Quarterly Journal Of Mathematics; 54; 2; 6-2003; 139-157
Compartir
Altmétricas