Mostrar el registro sencillo del ítem

dc.contributor.author
Harboure, Eleonor Ofelia  
dc.contributor.author
Salinas, Oscar Mario  
dc.contributor.author
Viviani, Beatriz Eleonora  
dc.date.available
2020-03-22T12:29:30Z  
dc.date.issued
2002-06  
dc.identifier.citation
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Orlicz boundedness for certain classical operators; Institute of Mathematics - Polish Academy of Sciencies; Colloquium Mathematicum; 91; 2; 6-2002; 263-282  
dc.identifier.issn
0010-1354  
dc.identifier.uri
http://hdl.handle.net/11336/100607  
dc.description.abstract
Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Mathematics - Polish Academy of Sciencies  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BOUNDEDNESS  
dc.subject
FRACTIONAL INTEGRAL  
dc.subject
HILBERT TRANSFORM  
dc.subject
MAXIMAL FUNCTION  
dc.subject
ORLICZ SPACES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Orlicz boundedness for certain classical operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T20:02:39Z  
dc.journal.volume
91  
dc.journal.number
2  
dc.journal.pagination
263-282  
dc.journal.pais
Polonia  
dc.description.fil
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Colloquium Mathematicum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/cm91-2-6