Artículo
Orlicz boundedness for certain classical operators
Fecha de publicación:
06/2002
Editorial:
Institute of Mathematics - Polish Academy of Sciencies
Revista:
Colloquium Mathematicum
ISSN:
0010-1354
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Orlicz boundedness for certain classical operators; Institute of Mathematics - Polish Academy of Sciencies; Colloquium Mathematicum; 91; 2; 6-2002; 263-282
Compartir
Altmétricas