Mostrar el registro sencillo del ítem

dc.contributor.author
Díaz, Carlos Ariel  
dc.contributor.author
Pérez, Diego Sebastián  
dc.contributor.author
Miatello, Humberto  
dc.contributor.author
Bromberg, Facundo  
dc.date.available
2020-03-20T16:14:09Z  
dc.date.issued
2018-08  
dc.identifier.citation
Díaz, Carlos Ariel; Pérez, Diego Sebastián; Miatello, Humberto; Bromberg, Facundo; Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification; Elsevier Science; Computers In Industry; 99; 8-2018; 303-312  
dc.identifier.issn
0166-3615  
dc.identifier.uri
http://hdl.handle.net/11336/100405  
dc.description.abstract
In viticulture, there are several applications where 3D bud detection and localization in vineyards is a necessary task susceptible to automation: measurement of sunlight exposure, autonomous pruning, bud counting, type-of-bud classification, bud geometric characterization, internode length, and bud development stage. This paper presents a workflow to achieve quality 3D localizations of grapevine buds based on well-known computer vision and machine learning algorithms when provided with images captured in natural field conditions (i.e., natural sunlight and the addition of no artificial elements), during the winter season and using a mobile phone RGB camera. Our pipeline combines the Oriented FAST and Rotated BRIEF (ORB) for keypoint detection, a Fast Local Descriptor for Dense Matching (DAISY) for describing the keypoint, and the Fast Approximate Nearest Neighbor (FLANN) technique for matching keypoints, with the Structure from Motion multi-view scheme for generating consistent 3D point clouds. Next, it uses a 2D scanning window classifier based on Bag of Features and Support Vectors Machine for classification of 3D points in the cloud. Finally, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for 3D bud localization is applied. Our approach resulted in a maximum precision of 1.0 (i.e., no false detections), a maximum recall of 0.45 (i.e. 45% of the buds detected), and a localization error within the range of 259–554 pixels (corresponding to approximately 3 bud diameters, or 1.5 cm) when evaluated over the whole range of user-given parameters of workflow components.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPUTER VISION  
dc.subject
GRAPEVINE BUD DETECTION  
dc.subject
PRECISION VITICULTURE  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T13:11:03Z  
dc.journal.volume
99  
dc.journal.pagination
303-312  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Díaz, Carlos Ariel. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina  
dc.description.fil
Fil: Pérez, Diego Sebastián. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Miatello, Humberto. New Lab; Estados Unidos  
dc.description.fil
Fil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Computers In Industry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0166361517304815  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compind.2018.03.033