Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification

Díaz, Carlos Ariel; Pérez, Diego SebastiánIcon ; Miatello, Humberto; Bromberg, FacundoIcon
Fecha de publicación: 08/2018
Editorial: Elsevier Science
Revista: Computers In Industry
ISSN: 0166-3615
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In viticulture, there are several applications where 3D bud detection and localization in vineyards is a necessary task susceptible to automation: measurement of sunlight exposure, autonomous pruning, bud counting, type-of-bud classification, bud geometric characterization, internode length, and bud development stage. This paper presents a workflow to achieve quality 3D localizations of grapevine buds based on well-known computer vision and machine learning algorithms when provided with images captured in natural field conditions (i.e., natural sunlight and the addition of no artificial elements), during the winter season and using a mobile phone RGB camera. Our pipeline combines the Oriented FAST and Rotated BRIEF (ORB) for keypoint detection, a Fast Local Descriptor for Dense Matching (DAISY) for describing the keypoint, and the Fast Approximate Nearest Neighbor (FLANN) technique for matching keypoints, with the Structure from Motion multi-view scheme for generating consistent 3D point clouds. Next, it uses a 2D scanning window classifier based on Bag of Features and Support Vectors Machine for classification of 3D points in the cloud. Finally, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for 3D bud localization is applied. Our approach resulted in a maximum precision of 1.0 (i.e., no false detections), a maximum recall of 0.45 (i.e. 45% of the buds detected), and a localization error within the range of 259–554 pixels (corresponding to approximately 3 bud diameters, or 1.5 cm) when evaluated over the whole range of user-given parameters of workflow components.
Palabras clave: COMPUTER VISION , GRAPEVINE BUD DETECTION , PRECISION VITICULTURE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.687Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/100405
URL: https://www.sciencedirect.com/science/article/abs/pii/S0166361517304815
DOI: http://dx.doi.org/10.1016/j.compind.2018.03.033
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Díaz, Carlos Ariel; Pérez, Diego Sebastián; Miatello, Humberto; Bromberg, Facundo; Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification; Elsevier Science; Computers In Industry; 99; 8-2018; 303-312
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES