Mostrar el registro sencillo del ítem
dc.contributor.author
Cianci, Nicolás Emanuel

dc.contributor.author
Ottina, Enzo Miguel

dc.date.available
2020-03-20T16:04:59Z
dc.date.issued
2018-07
dc.identifier.citation
Cianci, Nicolás Emanuel; Ottina, Enzo Miguel; Poset splitting and minimality of finite models; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 157; 7-2018; 120-161
dc.identifier.issn
0097-3165
dc.identifier.uri
http://hdl.handle.net/11336/100396
dc.description.abstract
We prove that the fundamental group and the integral homology groups of a poset with fewer than 13 points are torsion free, settling a conjecture of Hardie, Vermeulen and Witbooi and answering a question of Barmak. In addition, we prove that if a poset has fewer than 16 points then the geometric realization of its order complex can not be homotopy equivalent to either the torus or the Klein bottle, answering another open question. Furthermore, we find all the posets of 16 points (resp. of 13 points) such that the geometric realizations of their order complexes are homotopy equivalent to either the torus or the Klein bottle (resp. to the real projective plane).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EILENBERG–MACLANE SPACES
dc.subject
FINITE TOPOLOGICAL SPACES
dc.subject
HUREWICZ'S THEOREM
dc.subject
MINIMAL FINITE MODELS
dc.subject
POSETS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Poset splitting and minimality of finite models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-20T13:12:01Z
dc.journal.volume
157
dc.journal.pagination
120-161
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Cianci, Nicolás Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Ottina, Enzo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.journal.title
Journal of Combinatorial Theory Series A

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0097316518300256
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jcta.2018.02.010
Archivos asociados