Artículo
Poset splitting and minimality of finite models
Fecha de publicación:
07/2018
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Combinatorial Theory Series A
ISSN:
0097-3165
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that the fundamental group and the integral homology groups of a poset with fewer than 13 points are torsion free, settling a conjecture of Hardie, Vermeulen and Witbooi and answering a question of Barmak. In addition, we prove that if a poset has fewer than 16 points then the geometric realization of its order complex can not be homotopy equivalent to either the torus or the Klein bottle, answering another open question. Furthermore, we find all the posets of 16 points (resp. of 13 points) such that the geometric realizations of their order complexes are homotopy equivalent to either the torus or the Klein bottle (resp. to the real projective plane).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Cianci, Nicolás Emanuel; Ottina, Enzo Miguel; Poset splitting and minimality of finite models; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 157; 7-2018; 120-161
Compartir
Altmétricas