Artículo
MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
Fecha de publicación:
02/2019
Editorial:
Hindawi Publishing Corporation
Revista:
BioMed Research International
ISSN:
2314-6133
e-ISSN:
2314-6141
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
Palabras clave:
Machine Learning
,
QSAR
,
Feature Selection
,
Molecular Informatics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Martínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio; MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics; Hindawi Publishing Corporation; BioMed Research International; 2019; 2-2019; 1-12
Compartir
Altmétricas