Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Recht, Lázaro  
dc.contributor.author
Varela, Alejandro  
dc.date.available
2020-03-18T16:06:19Z  
dc.date.issued
2007-08  
dc.identifier.citation
Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro; Metric geodesics of isometries in a Hilbert space and the extension problem; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 8; 8-2007; 2527-2537  
dc.identifier.issn
0002-9939  
dc.identifier.uri
http://hdl.handle.net/11336/100038  
dc.description.abstract
We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ISOMETRY  
dc.subject
HOMOGENEUS SPACES  
dc.subject
GEODESICS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Metric geodesics of isometries in a Hilbert space and the extension problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-18T16:16:50Z  
dc.identifier.eissn
1088-6826  
dc.journal.volume
135  
dc.journal.number
8  
dc.journal.pagination
2527-2537  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Proceedings of the American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-08/S0002-9939-07-08753-9/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0002-9939-07-08753-9