Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Metric geodesics of isometries in a Hilbert space and the extension problem

Andruchow, EstebanIcon ; Recht, LázaroIcon ; Varela, AlejandroIcon
Fecha de publicación: 08/2007
Editorial: American Mathematical Society
Revista: Proceedings of the American Mathematical Society
ISSN: 0002-9939
e-ISSN: 1088-6826
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.
Palabras clave: ISOMETRY , HOMOGENEUS SPACES , GEODESICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 166.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/100038
URL: https://www.ams.org/journals/proc/2007-135-08/S0002-9939-07-08753-9/
DOI: https://doi.org/10.1090/S0002-9939-07-08753-9
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro; Metric geodesics of isometries in a Hilbert space and the extension problem; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 8; 8-2007; 2527-2537
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES