Mostrar el registro sencillo del ítem
dc.contributor.author
Shmerkin, Pablo Sebastian
dc.contributor.author
Suomala, Ville
dc.date.available
2020-03-17T15:06:35Z
dc.date.issued
2018-01
dc.identifier.citation
Shmerkin, Pablo Sebastian; Suomala, Ville; Spatially independent martingales, intersections and applications; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 251; 1195; 1-2018; 1-96
dc.identifier.issn
0065-9266
dc.identifier.uri
http://hdl.handle.net/11336/99802
dc.description.abstract
We define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrized measures {ηt}t, and show that under some natural checkable conditions, a.s. the mass of the intersections is H¨older continuous as a function of t. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Laba in connection to the restriction problem for fractal measures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MARTINGALES
dc.subject
RANDOM MEASURES
dc.subject
FRACTAL PERCOLATION
dc.subject
HAUSDORFF DIMENSION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Spatially independent martingales, intersections and applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-03T15:06:59Z
dc.journal.volume
251
dc.journal.number
1195
dc.journal.pagination
1-96
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Providence
dc.description.fil
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Suomala, Ville. Universidad de Oulu; Finlandia
dc.journal.title
Memoirs Of The American Mathematical Society (ams)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/memo/1195/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.6707v4
Archivos asociados