Mostrar el registro sencillo del ítem

dc.contributor.author
Shmerkin, Pablo Sebastian  
dc.contributor.author
Suomala, Ville  
dc.date.available
2020-03-17T15:06:35Z  
dc.date.issued
2018-01  
dc.identifier.citation
Shmerkin, Pablo Sebastian; Suomala, Ville; Spatially independent martingales, intersections and applications; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 251; 1195; 1-2018; 1-96  
dc.identifier.issn
0065-9266  
dc.identifier.uri
http://hdl.handle.net/11336/99802  
dc.description.abstract
We define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrized measures {ηt}t, and show that under some natural checkable conditions, a.s. the mass of the intersections is H¨older continuous as a function of t. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Laba in connection to the restriction problem for fractal measures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MARTINGALES  
dc.subject
RANDOM MEASURES  
dc.subject
FRACTAL PERCOLATION  
dc.subject
HAUSDORFF DIMENSION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatially independent martingales, intersections and applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-03T15:06:59Z  
dc.journal.volume
251  
dc.journal.number
1195  
dc.journal.pagination
1-96  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Suomala, Ville. Universidad de Oulu; Finlandia  
dc.journal.title
Memoirs Of The American Mathematical Society (ams)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/memo/1195/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.6707v4