Artículo
Continuous one-dimensional model of a spatial lattice. Deformation, vibration and buckling problems
Fecha de publicación:
03/2019
Editorial:
Elsevier
Revista:
Engineering Structures
ISSN:
0141-0296
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Lattice towers and guyed masts are frequently used in the telecommunication industry, particularly to support antennas. These structural systems comprise a large number of elements (mainly, legs and diagonals) and for this reason, their representation by equivalent models is quite common and convenient. In a previous study, the authors derived a continuous model of a spatial lattice governed by nine differential equations (9DE). The legs trace forms a triangle and the diagonals with a zig-zag pattern are contained in three planes that join each two legs, defined as Pattern 1. Here and starting from an energy statement, the structural behavior of a 1D continuous model governed by six differential equations (6DE) which leads to a simpler representation of the lattice structure, is stated. This formulation considers the shear flexibility and the second order effect due to axial loads. Also, the inertial forces due to the legs and diagonals masses are taken into account. Numerical examples dealing with deflections, critical buckling loads and natural frequencies are solved with this 1D model. The results are compared with the outcomes found with finite element methods. A very good performance is attained with the proposed model. Finally, the equivalent properties for other patterns of diagonalization (Patterns 2, 3 and 4) different to the studied as well as the formulas to find the critical loads are included in Appendices.
Palabras clave:
BUCKLING
,
CONTINUOUS MODEL
,
SPATIAL LATTICE
,
STATIC
,
VIBRATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Guzmán, Alberto Marcelo; Rosales, Marta Beatriz; Filipich, Carlos Pedro; Continuous one-dimensional model of a spatial lattice. Deformation, vibration and buckling problems; Elsevier; Engineering Structures; 182; 3-2019; 290-300
Compartir
Altmétricas