Mostrar el registro sencillo del ítem
dc.contributor.author
Boyd, John P.
dc.contributor.author
Amore, Paolo
dc.contributor.author
Fernández, Francisco Marcelo

dc.date.available
2020-03-16T20:07:58Z
dc.date.issued
2018-03
dc.identifier.citation
Boyd, John P.; Amore, Paolo; Fernández, Francisco Marcelo; Spectral algorithms for multiple scale localized eigenfunctions in infinitely long, slightly bent quantum waveguides; Elsevier Science; Computer Physics Communications; 224; 3-2018; 209-221
dc.identifier.issn
0010-4655
dc.identifier.uri
http://hdl.handle.net/11336/99682
dc.description.abstract
A “bent waveguide” in the sense used here is a small perturbation of a two-dimensional rectangular strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-channel coordinate. The goal is to calculate the smallest (“ground state”) eigenvalue of the stationary Schrödinger equation which here is a two-dimensional Helmholtz equation, ψxx+ψyy+Eψ=0 where E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the waveguide. Perturbation theory gives a good description when the “bending strength” parameter ϵ is small as described in our previous article (Amore et al., 2017) and other works cited therein. However, such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is therefore useful to develop numerical methods for the perturbed strip to cover intermediate ϵ where the perturbation series may be inaccurate and also to check the pertubation expansion when ϵ is small. The perturbation-induced change-in-eigenvalue, δ≡E(ϵ)−E(0), is O(ϵ2). We show that the computation becomes very challenging as ϵ→0 because (i) the ground state eigenfunction varies on both O(1) and O(1∕ϵ) length scales and (ii) high accuracy is needed to compute several correct digits in δ, which is itself small compared to the eigenvalue E. The multiple length scales are not geographically separate, but rather are inextricably commingled in the neighborhood of the boundary deformation. We show that coordinate mapping and immersed boundary strategies both reduce the computational domain to the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-channel direction. However, sine functions generate rather accurate analytical approximations with just a single basis function. In the down-channel coordinate, X∈[−∞,∞], Fourier domain truncation using the change of coordinate X=sinh(Lt) is considerably more efficient than rational Chebyshev functions TBn(X;L). All the spectral methods, however, yielded the required accuracy on a desktop computer.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PSEUDOSPECTRAL
dc.subject
QUANTUM WAVEGUIDE
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Spectral algorithms for multiple scale localized eigenfunctions in infinitely long, slightly bent quantum waveguides
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-16T14:05:30Z
dc.journal.volume
224
dc.journal.pagination
209-221
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Boyd, John P.. University of Michigan; Estados Unidos
dc.description.fil
Fil: Amore, Paolo. Universidad de Colima; México
dc.description.fil
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Computer Physics Communications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cpc.2017.10.015
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010465517303557
Archivos asociados