Mostrar el registro sencillo del ítem

dc.contributor.author
Gimenez, Juan Marcelo  
dc.contributor.author
Idelsohn, Sergio Rodolfo  
dc.contributor.author
Morin, Pedro  
dc.contributor.author
Nigro, Norberto Marcelo  
dc.contributor.other
Bazilevs, Yuri  
dc.contributor.other
Takizawa, Kenji  
dc.date.available
2020-03-13T18:09:22Z  
dc.date.issued
2016  
dc.identifier.citation
Gimenez, Juan Marcelo; Idelsohn, Sergio Rodolfo; Morin, Pedro; Nigro, Norberto Marcelo; Numerical validation of a preliminar error analysis of the Particle Finite Element Method and its comparison against an Eulerian formulation; Springer; 2016; 7-24  
dc.identifier.isbn
978-3-319-40827-9  
dc.identifier.uri
http://hdl.handle.net/11336/99505  
dc.description.abstract
The main goal of this paper is to validate experimentally the principal conclusions previuoslypublished in [1]. Two manufactured test cases were considered with their respective analytic solu-tions. First, an scalar transport equation is taken written in such a way that several parameters areincluded to stress the limits where the Eulerian and the Lagrangian approaches behave better. Theresults show the conditions to be fulfilled to choose between both formulations according to the prob-lem parameters. A brief discussion about the projection needed for PFEM-2 method is included,specially due to its impact on the error convergence rate. Laterly, an extension to Navier-Stokesequations is introduced using also a manufactured case to verify again the same conclusions. This paper intends to establish the first steps towards a mathematical error analysis for the Particle FiniteElement Method in order to justify the preliminar theoretical and experimental results presented inthis paper.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
particle methods  
dc.subject
cfd  
dc.subject
error analysis  
dc.subject
finite element method  
dc.subject.classification
Otras Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Numerical validation of a preliminar error analysis of the Particle Finite Element Method and its comparison against an Eulerian formulation  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-03-02T17:39:21Z  
dc.journal.pagination
7-24  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Idelsohn, Sergio Rodolfo. International Center for Numerical Methods in Engineering; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-40827-9_2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-40827-9_2  
dc.conicet.paginas
269  
dc.source.titulo
Advances in Computational Fluid-Structure Interaction and Flow Simulation. New Methods and Challenging Computations