Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing the capability of broadband indices derived from Landsat 8 Operational Land Imager to monitor above ground biomass and salinity in semiarid saline environments of the Bahía Blanca Estuary, Argentina

Celleri, CarlaIcon ; Zapperi, Georgina MaríaIcon ; Gonzalez Trilla, Gabriela LilianaIcon ; Pratolongo, Paula DanielaIcon
Fecha de publicación: 06/2019
Editorial: Taylor & Francis Ltd
Revista: International Journal of Remote Sensing
ISSN: 0143-1161
e-ISSN: 1366-5901
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

In arid and semi-arid ecosystems, salinisation and desertification are the most common processes of land degradation, and satellite data may provide a valuable tool to assess land surface condition and vegetation status. The aim of this study was to evaluate the capability of Landsat 8 OLI (Operational Land Imager) remote sensing information and broadband indices derived from it, to monitor above ground biomass (AGB) and salinity in two different semiarid saline environments (unit a and unit b) in the Bahía Blanca Estuary. Unit a (Ua) is composed of bushes of Cyclolepis genistoides in association with Atriplex undulata and 41% of bare soil. Unit b (Ub) is composed of dense thickets of Allenrolfea patagonica in association with C. genistoides and 34% of bare soil. Pearson’s correlation analyses were performed between field estimates of AGB and salinity (soil salinity and interstitial water salinity) and remote sensing estimates. Satellite data include surface reflectance of individual bands, vegetation indices (NDVI [normalised difference vegetation index], SAVI [soil-adjusted vegetation index], MSAVI2 [modified soil-adjusted vegetation index], NDII [normalised difference infrared index], GNDVI [green normalised difference vegetation index], GRNDI [green-red normalised difference index], OSAVI [optimised soil-adjusted vegetation index], SR [simple ratio]), and salinity indices (SI1, SI2, SI3 [salinity index 1, 2 and 3, respectively] and BI [brightness index]). Correlation analyses involving AGB were performed twice; first considering all months and then again excluding the months with higher soil salinities. In Ua, soil adjusted vegetation indices SAVI and MSAVI2 showed to be suitable to detect changes in the total green AGB and C. genistoides green AGB (the major contributor to total green AGB). After excluding data from December and January (the months with the highest soil salinity), green AGB of A. undulata also showed a significant positive correlation with soil adjusted indices SAVI, MSAVI2 and OSAVI. Although proportionally this species was not a large contributor to the total biomass, it is characterised by a high leaf reflectance, which makes it suitable for biomass retrieval. In Ub, significant positive correlations were obtained between NDVI, SAVI, NDII, OSAVI and SR indices and the AGB green ratio, but significant negative correlations were obtained between A. patagonica red AGB and these vegetation indices. When December and January were excluded from the analysis the negative correlations between vegetation indices NDVI, OSAVI and SR and red AGB remained significant (r = −0.68, −0.76 and −0.7, respectively). The positive correlations between these indices and AGB green ratio (r = 0.73, 0.78 and 0.75, respectively) remained significant as well. Significant negative correlations were also found between NDVI, NDII, GNDVI, OSAVI and SR indices and field salinity estimates. As soil salinisation induces A. patagonica reddening, red AGB and soil salinity covariate in the field, and the negative correlation with vegetation indices may be useful to retrieve information on both variables combined, which are indicative of water stress. Correlation analysis between field estimates of salinity and spectral salinity indices showed significant positive correlation for all the tested indices. The obtained results highlight the importance of a thoughtful selection of remote sensing indices to account for changes in vegetation biomass, especially in arid and semiarid environments particularly sensitive to desertification and salinisation. Also, ground truth cannot be overlooked, and field work is necessary to test index performance in every case.
Palabras clave: BIOMASS , LANDSAT , VEGETATION INDEX , OLI , SALINITY INDEX
Ver el registro completo
 
Archivos asociados
Tamaño: 2.972Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/99363
URL: https://www.tandfonline.com/doi/full/10.1080/01431161.2019.1574992
DOI: https://doi.org/10.1080/01431161.2019.1574992
Colecciones
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Citación
Celleri, Carla; Zapperi, Georgina María; Gonzalez Trilla, Gabriela Liliana; Pratolongo, Paula Daniela; Assessing the capability of broadband indices derived from Landsat 8 Operational Land Imager to monitor above ground biomass and salinity in semiarid saline environments of the Bahía Blanca Estuary, Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 40; 12; 6-2019; 4817-4838
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES