Artículo
Squares and their centers
Fecha de publicación:
02/2018
Editorial:
Springer
Revista:
Journal d'Analyse Mathématique
ISSN:
0021-7670
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the relationship between the size of two sets B, S ⊂ R2, when B contains either the whole boundary or the four vertices of a square with axes-parallel sides and center in every point of S. Size refers to cardinality, Hausdorff dimension, packing dimension, or upper or lower box dimension. Perhaps surprisingly, the results vary depending on the notion of size under consideration. For example, we construct a compact set B of Hausdorff dimension 1 which contains the boundary of an axes-parallel square with center in every point in [0, 1]2, prove that such a B must have packing and lower box dimension at least 7/4, and show by example that this is sharp. For more general sets of centers, the answers for packing and box counting dimensions also differ. These problems are inspired by the analogous problems for circles that were investigated by Bourgain, Marstrand and Wolff, among others.
Palabras clave:
Squares
,
Square Vertices
,
Hausdorff dimension
,
box dimension
,
packing dimension
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Keleti, Tamas; Nagy, Daniel; Shmerkin, Pablo Sebastian; Squares and their centers; Springer; Journal d'Analyse Mathématique; 134; 2; 2-2018; 643-669
Compartir
Altmétricas