Mostrar el registro sencillo del ítem
dc.contributor.author
Castin, Nicolas
dc.contributor.author
Pascuet, Maria Ines Magdalena
dc.contributor.author
Messina, L.
dc.contributor.author
Domain, C.
dc.contributor.author
Olsson, P.
dc.contributor.author
Pasianot, Roberto Cesar
dc.contributor.author
Malerba, L.
dc.date.available
2020-03-11T23:58:07Z
dc.date.issued
2018-06
dc.identifier.citation
Castin, Nicolas; Pascuet, Maria Ines Magdalena; Messina, L.; Domain, C.; Olsson, P.; et al.; Advanced atomistic models for radiation damage in Fe-based alloys: Contributions and future perspectives from artificial neural networks; Elsevier; Computational Materials Science; 148; 6-2018; 116-130
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/99256
dc.description.abstract
Machine learning, and more specifically artificial neural networks (ANN), are powerful and flexible numerical tools that can lead to significant improvements in many materials modelling techniques. This paper provides a review of the efforts made so far to describe the effects of irradiation in Fe-based and W-based alloys, in a multiscale modelling framework. ANN were successfully used as innovative parametrization tools in these models, thereby greatly enhancing their physical accuracy and capability to accomplish increasingly challenging goals. In the provided examples, the main goal of ANN is to predict how the chemical complexity of local atomic configurations, and/or specific strain fields, influence the activation energy of selected thermally-activated events. This is most often a more efficient approach with respect to previous computationally heavy methods. In a future perspective, similar schemes can be potentially used to calculate other quantities than activation energies. They can thus transfer atomic-scale properties to higher-scale simulations, providing a proper bridging across scales, and hence contributing to the achievement of accurate and reliable multiscale models.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORKS
dc.subject
IRRADIATION DAMAGE
dc.subject
KINETIC MONTE CARLO
dc.subject
MULTISCALE MODELLING
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Advanced atomistic models for radiation damage in Fe-based alloys: Contributions and future perspectives from artificial neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-11T13:02:31Z
dc.journal.volume
148
dc.journal.pagination
116-130
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Castin, Nicolas. Studie Centrum voor Kerneenergie; Bélgica
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Messina, L.. Royal Institute of Technology; Suecia
dc.description.fil
Fil: Domain, C.. Électricité de France; Francia
dc.description.fil
Fil: Olsson, P.. Royal Institute of Technology; Suecia
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
dc.description.fil
Fil: Malerba, L.. Studie Centrum voor Kerneenergie; Bélgica
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025618301083
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2018.02.025
Archivos asociados