Mostrar el registro sencillo del ítem

dc.contributor.author
Castin, Nicolas  
dc.contributor.author
Pascuet, Maria Ines Magdalena  
dc.contributor.author
Messina, L.  
dc.contributor.author
Domain, C.  
dc.contributor.author
Olsson, P.  
dc.contributor.author
Pasianot, Roberto Cesar  
dc.contributor.author
Malerba, L.  
dc.date.available
2020-03-11T23:58:07Z  
dc.date.issued
2018-06  
dc.identifier.citation
Castin, Nicolas; Pascuet, Maria Ines Magdalena; Messina, L.; Domain, C.; Olsson, P.; et al.; Advanced atomistic models for radiation damage in Fe-based alloys: Contributions and future perspectives from artificial neural networks; Elsevier; Computational Materials Science; 148; 6-2018; 116-130  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/99256  
dc.description.abstract
Machine learning, and more specifically artificial neural networks (ANN), are powerful and flexible numerical tools that can lead to significant improvements in many materials modelling techniques. This paper provides a review of the efforts made so far to describe the effects of irradiation in Fe-based and W-based alloys, in a multiscale modelling framework. ANN were successfully used as innovative parametrization tools in these models, thereby greatly enhancing their physical accuracy and capability to accomplish increasingly challenging goals. In the provided examples, the main goal of ANN is to predict how the chemical complexity of local atomic configurations, and/or specific strain fields, influence the activation energy of selected thermally-activated events. This is most often a more efficient approach with respect to previous computationally heavy methods. In a future perspective, similar schemes can be potentially used to calculate other quantities than activation energies. They can thus transfer atomic-scale properties to higher-scale simulations, providing a proper bridging across scales, and hence contributing to the achievement of accurate and reliable multiscale models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
IRRADIATION DAMAGE  
dc.subject
KINETIC MONTE CARLO  
dc.subject
MULTISCALE MODELLING  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Advanced atomistic models for radiation damage in Fe-based alloys: Contributions and future perspectives from artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-11T13:02:31Z  
dc.journal.volume
148  
dc.journal.pagination
116-130  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Castin, Nicolas. Studie Centrum voor Kerneenergie; Bélgica  
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Messina, L.. Royal Institute of Technology; Suecia  
dc.description.fil
Fil: Domain, C.. Électricité de France; Francia  
dc.description.fil
Fil: Olsson, P.. Royal Institute of Technology; Suecia  
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Malerba, L.. Studie Centrum voor Kerneenergie; Bélgica  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025618301083  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2018.02.025