Artículo
Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks
Cintas, Celia
; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio Augusto
; Navarro, Jose Pablo
; González José, Rolando
; Molinos, Manuel
Fecha de publicación:
01/2020
Editorial:
Elsevier France-editions Scientifiques Medicales Elsevier
Revista:
Journal Of Cultural Heritage
ISSN:
1296-2074
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Accurate classification of pottery vessels is a key aspect in several archaeological inquiries, including documentation of changes in style and ornaments, inference of chronological and ethnic groups, trading routes analyses, and many other matters. We present an unsupervised method for automatic feature extraction and classification of wheel-made vessels. A convolutional neural network was trained with a profile image database from Iberian wheel made pottery vessels found in the upper valley of the Guadalquivir River (Spain). During the design of the model, data augmentation and regularization techniques were implemented to obtain better generalization outcomes. The resulting model is able to provide classification on profile images automatically, with an accuracy mean score of 0.9013. Such computation methods will enhance and complement research on characterization and classification of pottery assemblages based on fragments.
Palabras clave:
CONVOLUTIONAL NETWORKS
,
DEEP LEARNING
,
POTTERY PROFILES
,
TYPOLOGIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Cintas, Celia; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio Augusto; Navarro, Jose Pablo; et al.; Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks; Elsevier France-editions Scientifiques Medicales Elsevier; Journal Of Cultural Heritage; 41; 1-2020; 106-112
Compartir
Altmétricas