Mostrar el registro sencillo del ítem

dc.contributor.author
Zhu, Tenglong  
dc.contributor.author
Troiani, Horacio Esteban  
dc.contributor.author
Mogni, Liliana Verónica  
dc.contributor.author
Han, Minfang  
dc.contributor.author
Barnett, Scott A.  
dc.date.available
2020-03-06T17:45:33Z  
dc.date.issued
2018-03  
dc.identifier.citation
Zhu, Tenglong; Troiani, Horacio Esteban; Mogni, Liliana Verónica; Han, Minfang; Barnett, Scott A.; Ni-Substituted Sr(Ti,Fe)O3 SOFC Anodes: Achieving High Performance via Metal Alloy Nanoparticle Exsolution; Cell Press; Joule; 2; 3; 3-2018; 478-496  
dc.identifier.issn
2542-4351  
dc.identifier.uri
http://hdl.handle.net/11336/98936  
dc.description.abstract
Electrically conducting oxides have been proposed as alternatives to Ni-based cermet anodes for solid oxide fuel cells (SOFCs) to overcome issues such as coking and impurity poisoning, but their electrochemical performance is typically inferior to that of Ni-based cermets. Here we show that a new oxide composition, Sr0.95(Ti0.3Fe0.63Ni0.07)O3−δ, yields anode polarization resistance competitive with Ni cermets, and substantially better than that of the corresponding Ni-free compound, SrTi0.3Fe0.7O3−δ. Exposure to fuel results in exsolution and nucleation of Ni0.5Fe0.5 nanoparticles uniformly dispersed on the Ni-substituted perovskite surface, whereas no nanoparticles are observed on SrTi0.3Fe0.7O3−δ. A general thermodynamic model is developed that quantitatively predicts exsolved nanoparticle composition. The reduction in anode polarization resistance by the nanoparticles, by as much as 4 times, is most pronounced at cell operating temperatures below 800°C and low H2 partial pressures, suggesting that the nanoparticles improve performance by promoting H2 adsorption. Mixed conducting perovskite oxides are proposed as alternatives for solid oxide fuel cell anodes, and in situ metallic nanoparticle precipitation/exsolution is considered to improve their performance. However, understanding of exsolution is still lacking, such as the reason why specific cations exsolve from an oxide anode and what determines the exsolved phase composition under various anode conditions. Here we directly compare Sr(Ti,Fe)O3-based anodes with and without exsolved metallic nanoparticles, showing their impact on electrochemical characteristics especially under low anode hydrogen concentrations and low temperatures. Three different methods are used to quantitatively determine the composition of the exsolved (Ni,Fe) nanoparticles, and for the first time demonstrate that this can be achieved through thermogravimetric analysis. This work is the first to propose a detailed thermodynamic theory predicting the exsolved nanoparticle composition with successful experimental verification. Ni-Fe nanoparticles are observed to exsolve from Ni-substituted Sr0.95(Ti0.3Fe0.63Ni0.07)O3−δ anode. The exsolved nanoparticles act to enhance hydrogen dissociative adsorption, yielding much lower anode polarization resistance and higher cell performance, especially under low pH2 and temperatures, which is comparable with the current Ni-based cermets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cell Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DECORATED SURFACES  
dc.subject
EXSOLUTION  
dc.subject
HYDROGEN ADSORPTION  
dc.subject
IMPEDANCE SPECTROSCOPY  
dc.subject
NANOPARTICLES  
dc.subject
PEROVSKITE ANODE  
dc.subject
SOLID OXIDE FUEL CELL  
dc.subject
SR(TI,FE)O3  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Ni-Substituted Sr(Ti,Fe)O3 SOFC Anodes: Achieving High Performance via Metal Alloy Nanoparticle Exsolution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-15T17:28:42Z  
dc.journal.volume
2  
dc.journal.number
3  
dc.journal.pagination
478-496  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Zhu, Tenglong. Northwestern University; Estados Unidos. Nanjing University of Science and Technology; China  
dc.description.fil
Fil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina  
dc.description.fil
Fil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Han, Minfang. Tsinghua University; China  
dc.description.fil
Fil: Barnett, Scott A.. Northwestern University; Estados Unidos  
dc.journal.title
Joule  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S2542435118300527  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.joule.2018.02.006