Mostrar el registro sencillo del ítem
dc.contributor.author
Colonna, Juan Gabriel
dc.contributor.author
Nakamura, Eduardo F.
dc.contributor.author
Rosso, Osvaldo Aníbal
dc.date.available
2020-03-05T21:08:26Z
dc.date.issued
2018-09
dc.identifier.citation
Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-120
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/98885
dc.description.abstract
We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
COLORED NOISE
dc.subject
INFORMATION THEORY
dc.subject
PERMUTATION ENTROPY
dc.subject
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-05T14:56:02Z
dc.journal.volume
106
dc.journal.pagination
107-120
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; Brasil
dc.description.fil
Fil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados Unidos
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; Chile
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2018.03.062
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417418302197
Archivos asociados