Artículo
A MATLAB SMO implementation to train a SVM classifier: Application to multi-style license plate numbers recognition
Fecha de publicación:
05/2018
Editorial:
Image Processing on Line
Revista:
Image Processing On Line
ISSN:
2105-1232
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper implements the Support Vector Machine (SVM) training procedure proposed by John Platt denominated Sequential Minimimal Optimization (SMO). The application of this system involves a multi-style license plate characters recognition identifying numbers from “0” to “9”. In order to be robust against license plates with different character/background colors, the characters (numbers) visual information is encoded using Histograms of Oriented Gradients (HOG). A reliability measure to validate the system outputs is also proposed. Several tests are performed to evaluate the sensitivity of the algorithm to different parameters and kernel functions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Negri, Pablo Augusto; A MATLAB SMO implementation to train a SVM classifier: Application to multi-style license plate numbers recognition; Image Processing on Line; Image Processing On Line; 8; 5-2018; 37-50
Compartir
Altmétricas