Mostrar el registro sencillo del ítem

dc.contributor.author
Quintero Rincón, Antonio  
dc.contributor.author
Pereyra, Marcelo  
dc.contributor.author
D'Giano, Carlos  
dc.contributor.author
Risk, Marcelo  
dc.contributor.author
Batatia, Hadj  
dc.date.available
2020-03-04T19:57:25Z  
dc.date.issued
2018-01  
dc.identifier.citation
Quintero Rincón, Antonio; Pereyra, Marcelo; D'Giano, Carlos; Risk, Marcelo; Batatia, Hadj; Fast statistical model-based classification of epileptic EEG signals; Elsevier; Biocybernetics And Biomedical Engineering; 38; 4; 1-2018; 877-889  
dc.identifier.issn
0208-5216  
dc.identifier.uri
http://hdl.handle.net/11336/98797  
dc.description.abstract
This paper presents a supervised classification method to accurately detect epileptic brain activity in real-time from electroencephalography (EEG) data. The proposed method has three main strengths: it has low computational cost, making it suitable for real-time implementation in EEG devices; it performs detection separately for each brain rhythm or EEG spectral band, following the current medical practices; and it can be trained with small datasets, which is key in clinical problems where there is limited annotated data available. This is in sharp contrast with modern approaches based on machine learning techniques, which achieve very high sensitivity and specificity but require large training sets with expert annotations that may not be available. The proposed method proceeds by first separating EEG signals into their five brain rhythms by using a wavelet filter bank. Each brain rhythm signal is then mapped to a low-dimensional manifold by using a generalized Gaussian statistical model; this dimensionality reduction step is computationally straightforward and greatly improves supervised classification performance in problems with little training data available. Finally, this is followed by parallel linear classifications on the statistical manifold to detect if the signals exhibit healthy or abnormal brain activity in each spectral band. The good performance of the proposed method is demonstrated with an application to paediatric neurology using 39 EEG recordings from the Children's Hospital Boston database, where it achieves an average sensitivity of 98%, specificity of 88%, and detection latency of 4 s, performing similarly to the best approaches from the literature.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
EEG  
dc.subject
EPILEPSY  
dc.subject
GENERALIZED GAUSSIAN DISTRIBUTION  
dc.subject
LEAVE-ONE-OUT CROSS-VALIDATION  
dc.subject
LINEAR CLASSIFIER  
dc.subject
WAVELET FILTER BANKS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fast statistical model-based classification of epileptic EEG signals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-03T15:05:44Z  
dc.journal.volume
38  
dc.journal.number
4  
dc.journal.pagination
877-889  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Quintero Rincón, Antonio. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; Argentina  
dc.description.fil
Fil: Pereyra, Marcelo. Heriot Watt University; Reino Unido  
dc.description.fil
Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.description.fil
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; Argentina  
dc.description.fil
Fil: Batatia, Hadj. University of Toulouse; Francia  
dc.journal.title
Biocybernetics And Biomedical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0208521618301219  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bbe.2018.08.002