Artículo
Correcting MM estimates for "fat" data sets
Fecha de publicación:
12/2010
Editorial:
Elsevier Science
Revista:
Computational Statistics and Data Analysis
ISSN:
0167-9473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Regression MM estimates require the estimation of the error scale, and the determination of a constant that controls the efficiency. These two steps are based on the asymptotic results that are derived assuming that the number of predictors p remains fixed while the number of observations n tends to infinity, which means assuming that the ratio p/n is "small". However, many high-dimensional data sets have a "large" value of p/n (say, ≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely that (a) the estimated scale underestimates the true error scale, and (b) that even if the scale is correctly estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks simple corrections for the scale and for the efficiency controlling constant are proposed, and it is demonstrated that these corrections improve on the estimate's performance under both normal and contaminated data.
Palabras clave:
MM estimators
,
M-scale
,
HIgh-dimensional data
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Maronna, Ricardo Antonio; Yohai, Victor Jaime; Correcting MM estimates for "fat" data sets; Elsevier Science; Computational Statistics and Data Analysis; 54; 12; 12-2010; 3168-3173
Compartir
Altmétricas