Mostrar el registro sencillo del ítem

dc.contributor.author
Hasson, Uri  
dc.contributor.author
Iacovacci, Jacopo  
dc.contributor.author
Davis, Ben  
dc.contributor.author
Flanagan, Ryan  
dc.contributor.author
Tagliazucchi, Enzo Rodolfo  
dc.contributor.author
Laufs, Helmut  
dc.contributor.author
Lacasa, Lucas  
dc.date.available
2020-03-02T19:34:35Z  
dc.date.issued
2018-12  
dc.identifier.citation
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-17  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/98655  
dc.description.abstract
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NEUROIMAGING  
dc.subject
STOCHASTIC PROCESSES  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:51:49Z  
dc.journal.volume
8  
dc.journal.number
1  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia  
dc.description.fil
Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido  
dc.description.fil
Fil: Davis, Ben. University of Trento; Italia  
dc.description.fil
Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido  
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos  
dc.description.fil
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania  
dc.description.fil
Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-018-21785-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-018-21785-0