Mostrar el registro sencillo del ítem

dc.contributor.author
Freytes, Verónica Mariana  
dc.contributor.author
Rosen, Marta  
dc.contributor.author
D'onofrio, Alejandro Gustavo  
dc.date.available
2020-02-21T14:51:07Z  
dc.date.issued
2018-10  
dc.identifier.citation
Freytes, Verónica Mariana; Rosen, Marta; D'onofrio, Alejandro Gustavo; Capillary film and breakup mechanism in the squeezing to dripping transition regime at the mesoscale between micro and milli-fluidics; American Institute of Physics; Chaos; 28; 10; 10-2018; 1-9  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/98259  
dc.description.abstract
We report a study of droplet generation in two phase flows of non-miscible fluids in a T-shaped array of circular channels, at the mesoscale between micro- and milli-fluidics. Our experiments show that the balance between the different types of forces (capillary forces, shear viscous forces, etc.) may differ significantly from that found by previous authors in smaller, microfluidics channels. The results may, therefore, be applied to practical systems in which droplets act as small chemical reactors or help enhance mixing. We suggest a possible interesting extension to the generation of drops inside porous media. We report experiments in which the length of the droplets and the residual thickness of the surrounding fluid film are systematically measured as a function of the respective flow rates of the two fluids: These results are carefully compared to theoretical models taking into account in different ways the capillary and viscous effects and to results obtained by other authors for smaller channels. Several dimensionless control variables are tested (capillary number, ratio of the flow rates of the two fluids, etc.). Capillary film thickness is shown to be a useful variable to identify the different regimes of formation. Testing of the theoretical models with the experimental data showed that the change from one formation regime to the other is accompanied by a change in the role of viscous effects. Two models of breakup mechanisms were tested: on the one hand, the pressure buildup mechanism and, on the other hand, a second mechanism corresponds to the balance of tangential shear stresses and interfacial tension. According to the formation regimes, both models have provided satisfactory predictions of the experimental results. However, at this mesoscale, the experimental data were better described by the models dependent on the capillary number, as previously reported in systems with a low degree of confinement.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
POROUS MEDIA  
dc.subject
DROPS  
dc.subject
CAPILLARY EFFECTS  
dc.subject
INTERFACIAL FLOWS  
dc.subject.classification
Ingeniería del Petróleo, Energía y Combustibles  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Capillary film and breakup mechanism in the squeezing to dripping transition regime at the mesoscale between micro and milli-fluidics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-18T16:08:43Z  
dc.journal.volume
28  
dc.journal.number
10  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Freytes, Verónica Mariana. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rosen, Marta. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: D'onofrio, Alejandro Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5033451  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5033451