Artículo
Algorithmic identification of probabilities is hard
Fecha de publicación:
08/2018
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Computer and System Sciences
ISSN:
0022-0000
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random.
Palabras clave:
ALGORITHMIC LEARNING THEORY
,
ALGORITHMIC RANDOMNESS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bienvenu, Laurent; Figueira, Santiago; Monin, Benoit; Shen, Alexander; Algorithmic identification of probabilities is hard; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 95; 8-2018; 98-108
Compartir
Altmétricas