Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Structural, electronic and hyperfine properties on Sm2O3, Eu2O3 and Gd2O3 phases

Richard, DiegoIcon ; Errico, Leonardo AntonioIcon ; Rentería, MarioIcon
Fecha de publicación: 09/2018
Editorial: Elsevier B.V.
Revista: Computational Condensed Matter
ISSN: 2352-2143
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

We present a detailed first-principles study of three rare-earth lanthanide sesquioxides (Ln2O3, Ln = Sm, Eu, and Gd) in the hexagonal A, the monoclinic B, and the cubic C phases. The calculations were performed with the Density Functional Theory (DFT)-based Augmented Plane Wave plus local orbital (APW + lo) method, using the local spin density approximation (LSDA) and the LSDA + U approach to take into account the strongly correlated Ln-4f electrons. We calculated the equilibrium structures and the effect of hydrostatic pressure on them, the density of states (DOS), the energy band-gaps and, finally, the electric-field-gradient (EFG) tensor at the different cationic sites. The obtained predictions reveal that for the three considered Ln2O3 sesquioxides, the C phase is the stable one, with a transition pressure to the A phase of about 1–2 GPa. For each Ln2O3, the predicted properties were compared with those obtained by means of different experimental techniques. We found that the crystal equilibrium volume, bulk modulus and its first pressure derivative obtained with LSDA are in good agreement with previous experimental results. On the other hand, the inclusion of the U term gives a correct description of the insulating ground state of these systems. Concerning the EFG tensor, LSDA and LSDA + U predict similar values for the EFG at each cationic site in all cases. These results are consistent with the hyperfine interactions experiments reported for the B and C phases of Gd2O3. Finally, we analyze the origin of the EFG at Ln sites, by considering the contributions of the different Ln orbitals to it, and its relation with the local structure.
Palabras clave: LANTHANIDE OXIDE , MECHANICAL PROPERTIES , HYPERFINE INTERACTIONS , ELECTRIC-FIELD-GRADIENT , DFT CALCULATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.558Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/98021
URL: https://linkinghub.elsevier.com/retrieve/pii/S235221431830176X
DOI: https://doi.org/10.1016/j.cocom.2018.e00327
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Richard, Diego; Errico, Leonardo Antonio; Rentería, Mario; Structural, electronic and hyperfine properties on Sm2O3, Eu2O3 and Gd2O3 phases; Elsevier B.V.; Computational Condensed Matter; 16; 9-2018; 327-327
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES