Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dimensionality reduction for visualization of normal and pathological speech data

Goddard, J.; Schlotthauer, GastonIcon ; Torres, Maria EugeniaIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 07/2009
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
Palabras clave: DATA VISUALIZATION , DIMENSIONALITY REDUCTION , KERNEL METHODS , PATHOLOGICAL VOICE ANALYSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 822.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/97938
URL: https://www.sciencedirect.com/science/article/pii/S1746809409000020
DOI: http://dx.doi.org/10.1016/j.bspc.2009.01.001
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES