Mostrar el registro sencillo del ítem
dc.contributor.author
Bonansea, Matias
dc.contributor.author
Bazan, Raquel
dc.contributor.author
Ferrero, Susana
dc.contributor.author
Rodriguez, Claudia
dc.contributor.author
Ledesma, Claudia
dc.contributor.author
Pinotti, Lucio Pedro
dc.date.available
2020-02-17T14:43:29Z
dc.date.issued
2018-02
dc.identifier.citation
Bonansea, Matias; Bazan, Raquel; Ferrero, Susana; Rodriguez, Claudia; Ledesma, Claudia; et al.; Multivariate statistical analysis for estimating surface water quality in reservoirs; Indercience Publishers; International Journal of Hydrology Science and Technology; 8; 1; 2-2018; 52-68
dc.identifier.issn
2042-7816
dc.identifier.uri
http://hdl.handle.net/11336/97726
dc.description.abstract
Regular water quality monitoring programs are an important aspect of water management. Different multivariate statistical techniques were applied for interpretation and evaluation of the data matrix obtained during a six years monitoring program (2006 to 2011) in the principal reservoirs of the central region of Argentina. Eleven sampling sites located in two reservoirs were surveyed each climatic season for 18 parameters. Cluster analysis grouped the sampling sites into three clusters and classified the different climatic seasons into two clusters based on their similarities. Principal component analysis/factor analysis showed the existence of five significant varifactors (VF) which account for 79.3 % of the variance, related to soluble salts, nutrients, physico-chemical parameters, and non-common source. Source contribution was calculated using multiple regression of sample mass concentration on the absolute VF scores. This study demonstrates the usefulness of multivariate statistical techniques helping managers to get better information about surface water systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Indercience Publishers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MONITORING PROGRAM
dc.subject
MULTIVARIATE STATISTICAL TECHNIQUES
dc.subject
PATTERN RECOGNATION
dc.subject
RESERVOIRS
dc.subject
WATER QUALITY
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multivariate statistical analysis for estimating surface water quality in reservoirs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-12T17:48:58Z
dc.identifier.eissn
2042-7808
dc.journal.volume
8
dc.journal.number
1
dc.journal.pagination
52-68
dc.journal.pais
Reino Unido
dc.journal.ciudad
London
dc.description.fil
Fil: Bonansea, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina
dc.description.fil
Fil: Bazan, Raquel. Universidad Nacional de Córdoba. Secretaria de Ciencia y Tecnología. Instituto Superior de Estudios Ambientales; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Química Industrial y Aplicada; Argentina
dc.description.fil
Fil: Ferrero, Susana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Rodriguez, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina
dc.description.fil
Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina
dc.description.fil
Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
dc.journal.title
International Journal of Hydrology Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1504/IJHST.2018.10008855
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.inderscience.com/offer.php?id=88675
Archivos asociados