Mostrar el registro sencillo del ítem

dc.contributor.author
Bonansea, Matias  
dc.contributor.author
Bazan, Raquel  
dc.contributor.author
Ferrero, Susana  
dc.contributor.author
Rodriguez, Claudia  
dc.contributor.author
Ledesma, Claudia  
dc.contributor.author
Pinotti, Lucio Pedro  
dc.date.available
2020-02-17T14:43:29Z  
dc.date.issued
2018-02  
dc.identifier.citation
Bonansea, Matias; Bazan, Raquel; Ferrero, Susana; Rodriguez, Claudia; Ledesma, Claudia; et al.; Multivariate statistical analysis for estimating surface water quality in reservoirs; Indercience Publishers; International Journal of Hydrology Science and Technology; 8; 1; 2-2018; 52-68  
dc.identifier.issn
2042-7816  
dc.identifier.uri
http://hdl.handle.net/11336/97726  
dc.description.abstract
Regular water quality monitoring programs are an important aspect of water management. Different multivariate statistical techniques were applied for interpretation and evaluation of the data matrix obtained during a six years monitoring program (2006 to 2011) in the principal reservoirs of the central region of Argentina. Eleven sampling sites located in two reservoirs were surveyed each climatic season for 18 parameters. Cluster analysis grouped the sampling sites into three clusters and classified the different climatic seasons into two clusters based on their similarities. Principal component analysis/factor analysis showed the existence of five significant varifactors (VF) which account for 79.3 % of the variance, related to soluble salts, nutrients, physico-chemical parameters, and non-common source. Source contribution was calculated using multiple regression of sample mass concentration on the absolute VF scores. This study demonstrates the usefulness of multivariate statistical techniques helping managers to get better information about surface water systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Indercience Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MONITORING PROGRAM  
dc.subject
MULTIVARIATE STATISTICAL TECHNIQUES  
dc.subject
PATTERN RECOGNATION  
dc.subject
RESERVOIRS  
dc.subject
WATER QUALITY  
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multivariate statistical analysis for estimating surface water quality in reservoirs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-12T17:48:58Z  
dc.identifier.eissn
2042-7808  
dc.journal.volume
8  
dc.journal.number
1  
dc.journal.pagination
52-68  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
London  
dc.description.fil
Fil: Bonansea, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina  
dc.description.fil
Fil: Bazan, Raquel. Universidad Nacional de Córdoba. Secretaria de Ciencia y Tecnología. Instituto Superior de Estudios Ambientales; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Química Industrial y Aplicada; Argentina  
dc.description.fil
Fil: Ferrero, Susana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Rodriguez, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina  
dc.description.fil
Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina  
dc.description.fil
Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina  
dc.journal.title
International Journal of Hydrology Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1504/IJHST.2018.10008855  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.inderscience.com/offer.php?id=88675