Mostrar el registro sencillo del ítem

dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.contributor.author
Galli, Julio Ricardo  
dc.contributor.author
Laca, E.A.  
dc.contributor.author
Cangiano, Carlos Alberto  
dc.date.available
2020-02-14T17:28:48Z  
dc.date.issued
2009-03  
dc.identifier.citation
Milone, Diego Humberto; Rufiner, Hugo Leonardo; Galli, Julio Ricardo; Laca, E.A.; Cangiano, Carlos Alberto; Computational method for segmentation and classification of ingestive sounds in sheep; Elsevier; Computers and Eletronics in Agriculture; 65; 2; 3-2009; 228-237  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/97578  
dc.description.abstract
In this work we propose a novel method to analyze and recognize automatically sound signals of chewing and biting. For the automatic segmentation and classification of acoustical ingestive behaviour of sheep the method use an appropriate acoustic representation and statistical modelling based on hidden Markov models. We analyzed 1813 seconds of chewing data from four sheep eating two different forages typically found in grazing production systems, orchardgrass and alfalfa, each at two sward heights. Because identification of species consumed when in mixed swards is a key issue in grazing science, we tested the possibility to discriminate species and sward height by using the proposed approach. Signals were correctly classified by forage and sward height in 67% of the cases, whereas forage was correctly identified 84% of the time. The results showed an overall performance of 82% for the recognition of chewing events.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACOUSTIC MODELING  
dc.subject
HIDDEN MARKOV MODELS  
dc.subject
GRAZING SHEEP  
dc.subject
INGESTIVE 15 BEHAVIOUR  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Computational method for segmentation and classification of ingestive sounds in sheep  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-13T18:56:08Z  
dc.journal.volume
65  
dc.journal.number
2  
dc.journal.pagination
228-237  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Galli, Julio Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Laca, E.A.. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina  
dc.description.fil
Fil: Cangiano, Carlos Alberto. University of California; Estados Unidos  
dc.journal.title
Computers and Eletronics in Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169908002214  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2008.10.004