Mostrar el registro sencillo del ítem
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Sanchez, Mabel Cristina
dc.contributor.author
Brignole, Nélida Beatriz
dc.date.available
2020-02-13T21:34:35Z
dc.date.issued
2004-01
dc.identifier.citation
Ponzoni, Ignacio; Sanchez, Mabel Cristina; Brignole, Nélida Beatriz; Direct Method for Structural Observability Analysis; American Chemical Society; Industrial & Engineering Chemical Research; 43; 2; 1-2004; 577-588
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/97510
dc.description.abstract
A noncombinatorial method for structural observability analysis is presented in this paper. The technique rearranges the process occurrence matrix to a specific block lower-triangular pattern by means of bigraphs and digraphs in two consecutive stages. The algorithmic core is constituted of a new node classification that leads to suitable maximum-matching decompositions even for structurally singular matrices. A three-step strategy for the identification and analysis of forbidden subsets was also designed to take into account the additional numeric constraints that guarantee further solvability of the final pattern. In contrast with other structural techniques, the proposed method treats complex nonlinear models in a remarkably efficient way. Its performance was compared with existing structural observability techniques for three industrial problems. The final results revealed that the direct method is extremely robust and efficient in computing times, becoming more efficacious as problems grow in size and complexity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
OBSERVABILITY ANALYSIS
dc.subject
GRAPHS
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Direct Method for Structural Observability Analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-13T20:02:25Z
dc.journal.volume
43
dc.journal.number
2
dc.journal.pagination
577-588
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/ie0300326
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ie0300326
Archivos asociados