Artículo
A Magnus approximation approach to harmonic systems with time-dependent frequencies
Fecha de publicación:
12/2018
Editorial:
Academic Press Inc Elsevier Science
Revista:
Annals of Physics (New York)
ISSN:
0003-4916
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We use a Magnus approximation at the level of the equations of motion for a harmonic system with a time-dependent frequency, to find an expansion for its in–out effective action, and a unitary expansion for the Bogoliubov transformation between in and out states. The dissipative effects derived therefrom are compared with the ones obtained from perturbation theory in powers of the time-dependent piece in the frequency, and with those derived using multiple scale analysis in systems with parametric resonance. We also apply the Magnus expansion to the in–in effective action, to construct reality and causal equations of motion for the external system. We show that the nonlocal equations of motion can be written in terms of a “retarded Fourier transform” evaluated at the resonant frequency.
Palabras clave:
BOGOLIUBOV TRANSFORMATION
,
EFFECTIVE ACTION
,
MAGNUS APPROXIMATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; A Magnus approximation approach to harmonic systems with time-dependent frequencies; Academic Press Inc Elsevier Science; Annals of Physics (New York); 399; 12-2018; 258-269
Compartir
Altmétricas