Artículo
Arsenic sorption onto titanium dioxide, granular ferric hydroxide and activated alumina: Batch and dynamic studies
Fecha de publicación:
02/2015
Editorial:
Taylor & Francis
Revista:
Journal Of Environmental Science And Health Part A-toxic/hazardous Substances & Environmental Engineering
ISSN:
1093-4529
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this work was to evaluate and compare the efficiencies of three different adsorbents for arsenic (As) removal from water: titanium dioxide (TiO2), granular ferric hydroxide (GFH) and activated alumina (AA). Equilibrium experiments for dissolved arsenite and arsenate were carried out through batch tests. Freundlich and Langmuir isotherm models were adopted and their parameters were estimated by non-linear regressions. In addition, dynamic experiments were performed in mini fixed bed columns and breakthrough curves were obtained for each combination of sorbate/adsorbent. Experimental results obtained by column assays were compared with predictions of well-known breakthrough models (Bohart?Adams and Clark). Results indicate that As(V) is more easily adsorbed than As(III) for AA and GFH, while TiO2 has a similar behavior for both species. The titanium-based material is the most efficient adsorbent to carry out the process, followed by the GFH.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Lescano, Maia Raquel; Passalia, Claudio; Zalazar, Cristina Susana; Brandi, Rodolfo Juan; Arsenic sorption onto titanium dioxide, granular ferric hydroxide and activated alumina: Batch and dynamic studies; Taylor & Francis; Journal Of Environmental Science And Health Part A-toxic/hazardous Substances & Environmental Engineering; 50; 4; 2-2015; 424-431
Compartir
Altmétricas