Mostrar el registro sencillo del ítem
dc.contributor.author
Aguilar, Daniel
dc.contributor.author
Oliva, Baldo
dc.contributor.author
Marino, Cristina Ester
dc.date.available
2020-02-12T17:58:02Z
dc.date.issued
2012-07
dc.identifier.citation
Aguilar, Daniel; Oliva, Baldo; Marino, Cristina Ester; Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features; Public Library of Science; Plos One; 7; 7; 7-2012; 1-12; e41430
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/97301
dc.description.abstract
Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks within a protein and their interactions. Second, we have investigated how this information can be used to improve methods of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the clusters, which could be the foundation of new prediction tools.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Coevolution
dc.subject
Mutual Information
dc.subject
coevolution network
dc.subject
Functional prediction
dc.subject
Enzimatic protein
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-07T13:40:17Z
dc.journal.volume
7
dc.journal.number
7
dc.journal.pagination
1-12; e41430
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Aguilar, Daniel. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Oliva, Baldo. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Marino, Cristina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0041430
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041430
Archivos asociados