Mostrar el registro sencillo del ítem

dc.contributor.author
Aguilar, Daniel  
dc.contributor.author
Oliva, Baldo  
dc.contributor.author
Marino, Cristina Ester  
dc.date.available
2020-02-12T17:58:02Z  
dc.date.issued
2012-07  
dc.identifier.citation
Aguilar, Daniel; Oliva, Baldo; Marino, Cristina Ester; Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features; Public Library of Science; Plos One; 7; 7; 7-2012; 1-12; e41430  
dc.identifier.issn
1932-6203  
dc.identifier.uri
http://hdl.handle.net/11336/97301  
dc.description.abstract
Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks within a protein and their interactions. Second, we have investigated how this information can be used to improve methods of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the clusters, which could be the foundation of new prediction tools.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Coevolution  
dc.subject
Mutual Information  
dc.subject
coevolution network  
dc.subject
Functional prediction  
dc.subject
Enzimatic protein  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-07T13:40:17Z  
dc.journal.volume
7  
dc.journal.number
7  
dc.journal.pagination
1-12; e41430  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Aguilar, Daniel. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Oliva, Baldo. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Marino, Cristina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0041430  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041430