Artículo
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension
Fecha de publicación:
04/2009
Editorial:
Elsevier Science Inc
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In general C*-algebras, elements with minimal norm in some equivalence class are introduced and characterized. We study the set of minimal hermitian matrices, in the case where the C*-algebra consists of 3 × 3 complex matrices, and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the flag manifold of 'four mutually orthogonal complex lines' in C4, it is shown that there are infinitely many minimal curves joining arbitrarily close points. In the case of the flag manifold of 'three mutually orthogonal complex lines' in C3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not occur.
Palabras clave:
APPROXIMATION
,
CURVES
,
FLAG MANIFOLDS
,
MATRICES
,
MINIMAL
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Mata Lorenzo, Luis E.; Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension; Elsevier Science Inc; Linear Algebra and its Applications; 430; 8-9; 4-2009; 1906-1928
Compartir
Altmétricas