Mostrar el registro sencillo del ítem

dc.contributor.author
Woracek, Robin  
dc.contributor.author
Santisteban, Javier Roberto  
dc.contributor.author
Fedrigo, Anna  
dc.contributor.author
Strobl, Markus  
dc.date.available
2020-02-11T20:41:35Z  
dc.date.issued
2018-01  
dc.identifier.citation
Woracek, Robin; Santisteban, Javier Roberto; Fedrigo, Anna; Strobl, Markus; Diffraction in neutron imaging - A review; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 878; 1-2018; 141-158  
dc.identifier.issn
0168-9002  
dc.identifier.uri
http://hdl.handle.net/11336/97230  
dc.description.abstract
Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that – supported by powerful neutron sources – are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CRYSTALLOGRAPHY  
dc.subject
DIFFRACTION  
dc.subject
NEURON TRANSMISSION  
dc.subject
NEUTRON IMAGING  
dc.subject
NEUTRON SCATTERING  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Diffraction in neutron imaging - A review  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-15T17:30:58Z  
dc.journal.volume
878  
dc.journal.pagination
141-158  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Woracek, Robin. European Spallation Source ERIC; Suecia  
dc.description.fil
Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Fedrigo, Anna. European Spallation Source ERIC; Suecia. Paul-Scherrer Institute; Suiza. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Strobl, Markus. European Spallation Source ERIC; Suecia  
dc.journal.title
Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nima.2017.07.040  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168900217307817