Mostrar el registro sencillo del ítem

dc.contributor.author
Hunziker, Jürg  
dc.contributor.author
Favino, Marco  
dc.contributor.author
Caspari, Eva  
dc.contributor.author
Quintal, Beatriz  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Krause, Rolf  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2020-02-10T20:57:09Z  
dc.date.issued
2018-01  
dc.identifier.citation
Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-143  
dc.identifier.issn
2169-9356  
dc.identifier.uri
http://hdl.handle.net/11336/97129  
dc.description.abstract
Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ROCK PHYSICS  
dc.subject
SEISMIC ATTENUATION  
dc.subject
STOCHASTIC FRACTURE NETWORKS  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-15T17:30:34Z  
dc.journal.volume
123  
dc.journal.number
1  
dc.journal.pagination
125-143  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Krause, Rolf. Universita Della Svizzera Italiana; Italia  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza  
dc.journal.title
Journal of Geophysical Research: Solid Earth  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/2017JB014566  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014566