Artículo
Irrationality exponent, Hausdorff dimension and effectivization
Fecha de publicación:
02/2018
Editorial:
Springer Wien
Revista:
Monatshefete Fur Mathematik
ISSN:
0026-9255
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 / a, we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to a. We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to b and irrationality exponent equal to a. In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.
Palabras clave:
CANTOR SETS
,
DIOPHANTINE APPROXIMATION
,
EFFECTIVE HAUSDORFF DIMENSION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Becher, Veronica Andrea; Reimann, Jan; Slaman, Theodore A.; Irrationality exponent, Hausdorff dimension and effectivization; Springer Wien; Monatshefete Fur Mathematik; 185; 2; 2-2018; 167-188
Compartir
Altmétricas