Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression

Carrillo, FacundoIcon ; Sigman, MarianoIcon ; Fernandez Slezak, DiegoIcon ; Ashton, Philip; Fitzgerald, Lily; Stroud, Jack; Nutt, David J.; Carhart Harris, Robin L.
Fecha de publicación: 04/2018
Editorial: Elsevier Science
Revista: Journal of Affective Disorders
ISSN: 0165-0327
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Psiquiatría; Otras Biotecnologías de la Salud

Resumen

Background: Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not. Methods: A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response. Results: Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision). Conclusions: Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity. Limitations: The sample size was small and replication is required to strengthen inferences on these results.
Palabras clave: COMPUTATIONAL PSYCHIATRY , DEPRESSION , MACHINE LEARNING , NATURAL SPEECH ANALYSIS , PREDICT THERAPEUTIC EFFECTIVENESS , PSILOCYBIN TREATMENT , TREATMENT-RESISTANT DEPRESSION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 301.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/97051
URL: https://www.sciencedirect.com/science/article/pii/S0165032717311643
DOI: https://doi.org/10.1016/j.jad.2018.01.006
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Carrillo, Facundo; Sigman, Mariano; Fernandez Slezak, Diego; Ashton, Philip; Fitzgerald, Lily; et al.; Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression; Elsevier Science; Journal of Affective Disorders; 230; 4-2018; 84-86
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES