Artículo
k-tuple colorings of the Cartesian product of graphs
Fecha de publicación:
01/2017
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-182
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Bonomo-Braberman, Flavia; Durán, Guillermo; Safe, Martin Dario ; Wagler, Annegret K. (Elsevier Science, 2020-07-15)
-
de Caria, Pablo Jesús ; Gutierrez, Marisa (Elsevier Science, 2016-09)
-
Bonomo, Flavia ; Duran, Guillermo Alfredo ; Safe, Martin Dario ; Wagler, Annegret Katrin (Discrete Mathematics and Theoretical Computer Science, 2014-03)