Mostrar el registro sencillo del ítem
dc.contributor.author
Celani, Sergio Arturo

dc.date.available
2020-02-06T14:27:53Z
dc.date.issued
2018-07
dc.identifier.citation
Celani, Sergio Arturo; Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
; Miskolc University; Miskolc Mathematical Notes; 19; 1; 7-2018; 171-189
dc.identifier.issn
1787-2405
dc.identifier.uri
http://hdl.handle.net/11336/96806
dc.description.abstract
In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism is a category, denoted by BoQS. We shall prove that this category is equivalent to the category StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations, satisfying additional conditions. This duality extends the duality for meet-homomorphism given by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Miskolc University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BOOLEAN ALGEBRAS
dc.subject
PROXIMITY RELATIONS
dc.subject
QUASI-SEMI-HOMOMORPHISMS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-01-31T21:08:43Z
dc.journal.volume
19
dc.journal.number
1
dc.journal.pagination
171-189
dc.journal.pais
Hungría

dc.journal.ciudad
Miskolc
dc.description.fil
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Miskolc Mathematical Notes

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://mat76.mat.uni-miskolc.hu/mnotes/article/1803
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18514/MMN.2018.1803
Archivos asociados