Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states

Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo RodolfoIcon ; Laufs, Helmut; Someren, Eus Van; Jobst, Beatrice; Stevner, Angus; Kringelbach, Morten L.
Fecha de publicación: 04/2018
Editorial: Academic Press
Revista: Journal Neuroimag
ISSN: 1053-8119
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas; Biofísica

Resumen

Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.
Palabras clave: BRAIN STATE , PERTURBATION , SLEEP , WHOLE BRAIN MODELING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.178Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/96791
DOI: https://doi.org/10.1016/j.neuroimage.2017.12.009
URL: https://www.sciencedirect.com/science/article/pii/S1053811917310236
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-56
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES