Mostrar el registro sencillo del ítem

dc.contributor.author
Bavastri, C.A.  
dc.contributor.author
Febbo, Mariano  
dc.contributor.author
Gonçalves, V.V.  
dc.contributor.author
Lopes, Eduardo M. O.  
dc.date.available
2020-02-05T15:12:32Z  
dc.date.issued
2014-07  
dc.identifier.citation
Bavastri, C.A.; Febbo, Mariano; Gonçalves, V.V.; Lopes, Eduardo M. O.; Optimum viscoelastic absorbers for cubic nonlinear systems; Sage Publications Ltd; Journal Of Vibration And Control; 20; 10; 7-2014; 1464-1474  
dc.identifier.issn
1077-5463  
dc.identifier.uri
http://hdl.handle.net/11336/96725  
dc.description.abstract
Dynamic vibration absorbers are efficient devices used in vibration and noise control of several mechanical systems. In recent years, some studies about these control devices comprising systems with nonlinear characteristics have emerged. In those cases, either the primary system or the dynamic absorber, or even both, can be nonlinear in terms of their stiffness. On the other hand, the absorber damping is generally modeled as viscous. The viscous damping model is widely used in numerical simulations but is very difficult to achieve in real situations. An alternative is the use of viscoelastic damping models, which brings flexibility for vibration control actions. In this work, a methodology to optimally design a viscoelastic dynamic vibration absorber when attached to a nonlinear single-degree-of-freedom system will be presented. The mathematical formulation of the problem is based on the generalized equivalent parameters concept along with the harmonic balance method. The cubic nonlinearity is considered in the primary system and the viscoelastic material is represented by the four-parameter fractional derivative model. Numerical simulations to find the optimal parameters of the absorber are performed for three different types of viscoelastic materials using nonlinear optimization techniques. For some conditions, the results show that the viscoelastic absorber «linearizes» the compound system when this device is properly designed and attached to it. This is mainly due to the reaction forces introduced by the absorber and the large dissipation of vibratory energy introduced by the viscoelastic material. A study of the stability of the compound system reveals that, for most of the time, the periodic solution remains stable for the whole frequency range of concern.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sage Publications Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CUBIC NONLINEAR SYSTEMS  
dc.subject
FRACTIONAL DERIVATIVE MODEL  
dc.subject
OPTIMUM VISCOELASTIC DYNAMIC ABSORBERS  
dc.subject
VIBRATION CONTROL  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Optimum viscoelastic absorbers for cubic nonlinear systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-04T17:10:38Z  
dc.identifier.eissn
17412986  
dc.journal.volume
20  
dc.journal.number
10  
dc.journal.pagination
1464-1474  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bavastri, C.A.. Universidade Federal do Paraná; Brasil  
dc.description.fil
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Gonçalves, V.V.. Universidade Federal do Paraná; Brasil  
dc.description.fil
Fil: Lopes, Emo. Universidade Federal do Paraná; Brasil  
dc.journal.title
Journal Of Vibration And Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/1077546312473322  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1177/1077546312473322