Mostrar el registro sencillo del ítem

dc.contributor.author
Robina Merlino, Ariana Melisa  
dc.contributor.author
Pronsato, Maria Estela  
dc.date.available
2020-02-05T14:53:50Z  
dc.date.issued
2015-11  
dc.identifier.citation
Robina Merlino, Ariana Melisa; Pronsato, Maria Estela; Materials for hydrogen storage; Consejo Federal de Decanos de Ingeniería de la República Argentina; Revista Argentina de Ingeniería; 6; 11-2015; 41-49  
dc.identifier.issn
2314-0925  
dc.identifier.uri
http://hdl.handle.net/11336/96724  
dc.description.abstract
In the present article two systems studied theoretically in the Physics De-partment of the Universidad Nacional del Sur are presented. Both are related to the Physics of Ma-terials, more specifically to intermetallic hydrogen storage materials, and have been developed using self-consistent Density Functional Theory (DFT) calculations. DFT is a phenomenally successful approach to finding solutions to the fundamental expression that describes the quantum behaviour of atoms and molecules, the Schrödinger equation, in settings of practical value.Laves phases, under the representative forms cubic MgCu2 (C15) and hexagonal MgZn2 (C14) and MgNi2 (C36), have been extensively studied due to their promising behavior as solid state hy-drogen storage materials, ease of synthesis by the conventional cast methods, flexibility in tailoring the thermodynamic properties and good absorp-tion/desorption kinetics and cycle life. However, they cannot be used for technological applications because of its too strong hydride stability at room temperature.In this work we studied the hydrogen absorp-tion for Zr(Cr0.5Ni0.5)2, isostructural with the MgZn2 Laves phase, with the aim to find the most energetically favorable interstitial sites to locate hydrogen. Bulk modulus and volume cell changes due to the hydrogenation process were also ana-lyzed for this phase.According to literature, the most stable were the A2B2 sites, with an absorption energy average of -0.25 eV, followed by the AB3 sites. Bulk Modu-lus fluctuated in the range of 150 and165 GPa.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Consejo Federal de Decanos de Ingeniería de la República Argentina  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LAVES PHASES  
dc.subject
HYDROGEN ABSORPTION  
dc.subject
DFT  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Materials for hydrogen storage  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-04T17:08:47Z  
dc.journal.volume
6  
dc.journal.pagination
41-49  
dc.journal.pais
Argentina  
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires  
dc.description.fil
Fil: Robina Merlino, Ariana Melisa. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina  
dc.description.fil
Fil: Pronsato, Maria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.journal.title
Revista Argentina de Ingeniería  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://radi.org.ar/wp-content/uploads/2016/10/11-2.pdf