Mostrar el registro sencillo del ítem

dc.contributor.author
Altirriba, Jordi  
dc.contributor.author
Barbera, Albert  
dc.contributor.author
del Zotto, Hector Herminio  
dc.contributor.author
Nadal, Belen  
dc.contributor.author
Piquer, Sandra  
dc.contributor.author
Sánchez Pla, Alex  
dc.contributor.author
Gagliardino, Juan Jose  
dc.contributor.author
Gomis, Ramon  
dc.date.available
2020-02-03T19:53:46Z  
dc.date.issued
2009-08  
dc.identifier.citation
Altirriba, Jordi; Barbera, Albert; del Zotto, Hector Herminio; Nadal, Belen; Piquer, Sandra; et al.; Molecular mechanisms of tungstate-induced pancreatic plasticity: A transcriptomics approach; BioMed Central; BMC Genomics; 10; 1; 8-2009; 1-13  
dc.identifier.issn
1471-2164  
dc.identifier.uri
http://hdl.handle.net/11336/96573  
dc.description.abstract
Background: Sodium tungstate is known to be an effective anti-diabetic agent, able to increase beta cell mass in animal models of diabetes, although the molecular mechanisms of this treatment and the genes that control pancreas plasticity are yet to be identified. Using a transcriptomics approach, the aim of the study is to unravel the molecular mechanisms which participate in the recovery of exocrine and endocrine function of streptozotocin (STZ) diabetic rats treated with tungstate, determining the hyperglycemia contribution and the direct effect of tungstate. Results: Streptozotocin (STZ)-diabetic rats were treated orally with tungstate for five weeks. Treated (STZ)-diabetic rats showed a partial recovery of exocrine and endocrine function, with lower glycemia, increased insulinemia and amylasemia, and increased beta cell mass achieved by reducing beta cell apoptosis and raising beta cell proliferation. The microarray analysis of the pancreases led to the identification of three groups of differentially expressed genes: genes altered due to diabetes, genes restored by the treatment, and genes specifically induced by tungstate in the diabetic animals. The results were corroborated by quantitative PCR. A detailed description of the pathways involved in the pancreatic effects of tungstate is provided in this paper. Hyperglycemia contribution was studied in STZ-diabetic rats treated with phloridzin, and the direct effect of tungstate was determined in INS-1E cells treated with tungstate or serum from untreated or treated STZ-rats, observing that tungstate action in the pancreas takes places via hyperglycemia-independent pathways and via a combination of tungstate direct and indirect (through the serum profile modification) effects. Finally, the MAPK pathway was evaluated, observing that it has a key role in the tungstate-induced increase of beta cell proliferation as tungstate activates the mitogen-activated protein kinase (MAPK) pathway directly by increasing p42/p44 phosphorylation and indirectly by decreasing the expression of raf kinase inhibitor protein (Rkip), a negative modulator of the pathway. Conclusion: In conclusion, tungstate improves pancreatic function through a combination of hyperglycemia-independent pathways and through its own direct and indirect effects, whereas the MAPK pathway has a key role in the tungstate-induced increase of beta cell proliferation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
TUNGSTATO  
dc.subject
CELULAS B  
dc.subject
DIABETES  
dc.subject
MASA DE CELULS B  
dc.subject.classification
Farmacología y Farmacia  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Molecular mechanisms of tungstate-induced pancreatic plasticity: A transcriptomics approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-11-25T18:41:09Z  
dc.journal.volume
10  
dc.journal.number
1  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Altirriba, Jordi. Hospital Clinic de Barcelona; España. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas; España  
dc.description.fil
Fil: Barbera, Albert. Hospital Clinic de Barcelona; España  
dc.description.fil
Fil: del Zotto, Hector Herminio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Endocrinología Experimental y Aplicada (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Médicas; Argentina  
dc.description.fil
Fil: Nadal, Belen. Hospital Clinic de Barcelona; España. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas; España  
dc.description.fil
Fil: Piquer, Sandra. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas; España. Hospital Clinic de Barcelona; España  
dc.description.fil
Fil: Sánchez Pla, Alex. Universidad Autónoma de Barcelona. Hospital Vall D' Hebron; España. Universidad de Barcelona; España  
dc.description.fil
Fil: Gagliardino, Juan Jose. Universidad Nacional de La Plata. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Endocrinología Experimental y Aplicada (i); Argentina  
dc.description.fil
Fil: Gomis, Ramon. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas; España. Hospital Clinic de Barcelona; España  
dc.journal.title
BMC Genomics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-10-406  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/1471-2164-10-406