Mostrar el registro sencillo del ítem

dc.contributor.author
Babino, Lucía  
dc.contributor.author
Rotnitzky, Andrea Gloria  
dc.contributor.author
Robins, James  
dc.date.available
2020-02-03T15:30:37Z  
dc.date.issued
2019-03  
dc.identifier.citation
Babino, Lucía; Rotnitzky, Andrea Gloria; Robins, James; Multiple robust estimation of marginal structural mean models for unconstrained outcomes; Wiley Blackwell Publishing, Inc; Biometrics; 75; 1; 3-2019; 90-99  
dc.identifier.issn
0006-341X  
dc.identifier.uri
http://hdl.handle.net/11336/96535  
dc.description.abstract
We consider estimation, from longitudinal observational data, of the parameters of marginal structural mean models for unconstrained outcomes. Current proposals include inverse probability of treatment weighted and double robust (DR) estimators. A difficulty with DR estimation is that it requires postulating a sequence of models, one for the each mean of the counterfactual outcome given covariate and treatment history up to each exposure time point. Most natural models for such means are often incompatible. Robins et al., (2000b) proposed a parameterization of the likelihood which implies compatible parametric models for such means. Their parameterization has not been exploited to construct DR estimators and one goal of this article is to fill this gap. More importantly, exploiting this parameterization we propose a multiple robust (MR) estimator that confers even more protection against model misspecification than DR estimators. Our methods are easy to implement as they are based on the iterative fit of a sequence of weighted regressions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPATIBLE MODELS  
dc.subject
DOUBLY ROBUST ESTIMATION  
dc.subject
INVERSE PROBABILITY WEIGHTED ESTIMATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multiple robust estimation of marginal structural mean models for unconstrained outcomes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-09T20:45:40Z  
dc.journal.volume
75  
dc.journal.number
1  
dc.journal.pagination
90-99  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Babino, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Robins, James. Harvard University. Harvard School of Public Health; Estados Unidos  
dc.journal.title
Biometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/biom.12924  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/biom.12924