Mostrar el registro sencillo del ítem
dc.contributor.author
Babino, Lucía
dc.contributor.author
Rotnitzky, Andrea Gloria
dc.contributor.author
Robins, James
dc.date.available
2020-02-03T15:30:37Z
dc.date.issued
2019-03
dc.identifier.citation
Babino, Lucía; Rotnitzky, Andrea Gloria; Robins, James; Multiple robust estimation of marginal structural mean models for unconstrained outcomes; Wiley Blackwell Publishing, Inc; Biometrics; 75; 1; 3-2019; 90-99
dc.identifier.issn
0006-341X
dc.identifier.uri
http://hdl.handle.net/11336/96535
dc.description.abstract
We consider estimation, from longitudinal observational data, of the parameters of marginal structural mean models for unconstrained outcomes. Current proposals include inverse probability of treatment weighted and double robust (DR) estimators. A difficulty with DR estimation is that it requires postulating a sequence of models, one for the each mean of the counterfactual outcome given covariate and treatment history up to each exposure time point. Most natural models for such means are often incompatible. Robins et al., (2000b) proposed a parameterization of the likelihood which implies compatible parametric models for such means. Their parameterization has not been exploited to construct DR estimators and one goal of this article is to fill this gap. More importantly, exploiting this parameterization we propose a multiple robust (MR) estimator that confers even more protection against model misspecification than DR estimators. Our methods are easy to implement as they are based on the iterative fit of a sequence of weighted regressions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPATIBLE MODELS
dc.subject
DOUBLY ROBUST ESTIMATION
dc.subject
INVERSE PROBABILITY WEIGHTED ESTIMATION
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multiple robust estimation of marginal structural mean models for unconstrained outcomes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-09T20:45:40Z
dc.journal.volume
75
dc.journal.number
1
dc.journal.pagination
90-99
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Babino, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
dc.description.fil
Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Robins, James. Harvard University. Harvard School of Public Health; Estados Unidos
dc.journal.title
Biometrics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/biom.12924
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/biom.12924
Archivos asociados